#### Stream Reclamation

A good practice just got better

William P. Ruzzo, PE, LLC Cherry Creek Basin Water Quality Authority

#### Stream Reclamation

What is it, what are the benefits, and how do we know it works?

# Cottonwood Creek...in need of Reclamation



### Cottonwood Creek after Reclamation



# Cottonwood Creek later



#### CR 72.2 Guidance Document Stream Reclamation

 means additional measures or enhancements to channel or stream stabilization that typically includes riparian and floodplain vegetation planting and a channel cross section that results in more frequent connection and flooding of the overbank area

# What are the WQ benefits of Reclamation?

- Channel area has lower velocity, shear, and stream power:
  - 1. Reduced erosion
  - 2. Reduced particulate pollutant transport
- Riparian Vegetation further reduces velocities:
  - 1. Promotes more sedimentation
  - 2. More pollutant filtration
- Floodplain Area also reduces velocities
  - 1. More sedimentation
  - 2. More filtration
  - 3. Can also promote infiltration

# How do we know stream reclamation works?

Action plan of choice Technical Analysis Monitoring Data

### Action Plan of Choice Example Findings

- "This study has shown that stream restoration can be one of the most cost-effective methods of preventing phosphorus from entering lakes." (Dove 2009)
- "...stream restoration projects that were hydrologically connected to their floodplains had increased rates of denitrification relative to restored streams that were not as well reconnected to their floodplains. " (Berg 2009)

# Other Experiences

- Ward Branch, Springfield Mo 2009
- Stroubles Creek, Virginia Tech 2006
- P in sediment = 400 mg/kg<sup>2</sup> vrs 1200 mg/kg

| Item                   | Ward Branch  | Cottonwood     | <b>Stroubles Creek</b> |
|------------------------|--------------|----------------|------------------------|
| Interest Rate Adjusted | \$188        | \$165 to \$617 | \$317                  |
| Pound P Removal        | <b>\$100</b> | ¢100 to ¢011   | ΨĊΤΤ                   |
|                        |              |                |                        |

#### **Technical Analysis**

Using Channel Hydraulics and a Comparative Approach

Using Hydraulic Characteristics to **Quantify Water Quality Benefits** Reference Approach - Cottonwood Creek **Reclamation provide baseline data** Statistical Analysis of Characteristics: Velocity (fps) Shear (lbs/sf) Power (lbs-f/s) Probability analysis of Wetted Area

#### Cottonwood Creek The new baseline

TP Comparison U/S to D/S Cottonwood Creek



## Cottonwood Creek Data History

Cottonwood Creek Station CT-1 Flow Weighted Total Phosphorus at Lake View Road



# Lower shear means less sediment transport.



#### More Technical Analysis Wetted Area

- Main channel connection to riparian area and floodplain is vital.
  - How often does the main channel leave its banks?
  - How much riparian and floodplain area can be inundated on an annual basis?

# Does a straight line represent the best the project can achieve?



# Shape of the curve tells a story



# What have we learned and what's next?

# Stream Reclamation – The Right Thing to Do.

Water quality benefits of stream reclamation supported by:

- Literature
- Authority data
- Technical Analysis

Cottonwood Creek has become Authority baseline for comparison

Authority published report in 2011

# Parting Shot

If we do a good job you can't see it.

Bill.Ruzzo@comcast.net